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ABSTRACT: Although Parkinson’s disease (PD)
is primarily considered a disorder of initiation of actions,
patients also have deficits in inhibitory control, both in
the motor and cognitive domains. Impulse control disor-
ders, which can develop in association with dopaminer-
gic medication in a small proportion of patients with
PD, are the symptoms most commonly considered as
representing inhibitory deficits. However, there is now
also a body of evidence suggesting a role for the sub-
thalamic nucleus (STN), which is ordinarily hyperactive
in PD, in inhibitory control. Here, we review evidence
from animal studies, imaging studies, and investigations
recording STN activity intra- or perioperatively in
patients with PD having surgery for DBS of the STN

(STN-DBS). We also highlight relevant hypotheses about
the role of the STN and consider evidence from studies
that have examined the effect of STN-DBS in patients
with PD on performance of experimental tasks requiring
inhibition of prepotent or habitual responses or decision
making under conflict, as well as the psychiatric side
effects of STN-DBS. Though the results are not always
consistent, nevertheless, this body of evidence sup-
ports the role of the STN in inhibitory and executive
control. VC 2014 International Parkinson and Movement
Disorder Society
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Given that bradykinesia and akinesia are among the
main symptoms of Parkinson’s disease (PD), the disorder
is commonly considered to involve an initiation and exe-
cution deficit, but also reduction of automatic move-

ments, such as blinking, gesturing, or arm swing.
However, bradykinesia and akinesia can also be concep-
tualized as a failure of phasic release of cortical motor
and premotor areas from the tonic inhibition of the basal
ganglia, which is the way it has been conceptualized in
the Albin et al.1 and De Long2 models. Excessive inhibi-
tion of the intention to move is also reflected by freezing
of gait, episodes when initiation of movement is tempo-
rarily blocked and patients feel as if their feet are glued to
the floor, which are common in PD and induced by turn-
ing, fatigue, confined spaces, and stressful situations.3 In
contrast, levodopa-induced dyskinesias, involuntary
movements that develop in PD after long-term therapy,
represent excessive disinhibition of movement and are
considered to reflect reduced inhibitory output from the
basal ganglia.4

The profile of executive dysfunction in PD includes
deficits in inhibitory control.5 There is evidence from
studies using tasks, such as go no-go reaction times
(RTs) and stop signal tasks, which respectively
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measure action restraint and motor inhibition, that PD
patients have deficits in motor inhibition (e.g., see pre-
vious works6-10). In addition, PD patients have inhibi-
tory deficits on executive control tasks necessitating
inhibition of habitual or prepotent responses for selec-
tion of appropriate responses, such as on the Stroop,
random number generation, and the Hayling, Simon,
or Eriksen flanker tasks.8,10-13

PD is characterized by hyperactivity and synchron-
ized oscillatory activity of the STN and the internal
segment of the globus pallidus (GPi).14,15 In PD, inhib-
itory deficits are commonly considered in relation to
impulse control disorders (ICDs) associated with treat-
ment with dopaminergic medication. However, there
is now a body of evidence that relates the STN to
inhibition and impulsivity (for review, see16,17). In this
article, our aim is to examine the role of the STN in
inhibitory control by reviewing evidence from animal
lesion studies, imaging in humans, electrophysiological
and behavioral studies following surgery in PD, and
consideration of the psychiatric problems encountered
after such surgery, which suggest failure of inhibition
and impulsivity.

The STN, Inhibition, and Impulsivity

The STN is a small, lens-shaped nucleus, which is
part of the indirect pathway and also receives inputs
from various frontal areas, including the motor cortex,
pre-SMA (supplementary motor area), caudal and dor-
sal premotor cortex, dorsolateral prefrontal cortex,
anterior cingulate, and inferior frontal cortex through
the hyperdirect pathway.18-20 The hyperdirect path-
way is the shortest and quickest route for influencing
the tonic inhibition of the GPi/SNr over cortical areas
and achieving inhibition of action. Dorsal, central,
and medial sections of the STN have been related to
motor, associative, and limbic functions, respectively,
identified in monkeys using anterograde tracing21 and
also in humans with imaging,22 although, from a
meta-analysis of the evidence, this tripartite division
has been questioned.23

DBS of the STN (STN-DBS) is now established in
randomized, controlled trials as an effective therapy
for the motor symptoms of PD.24-26 It has been pro-
posed that, in PD, STN-DBS interferes with the nor-
mal function of the STN in situations of conflict,
which is to send a “hold your horses” or “no go” sig-
nal to temporarily raise the response threshold to
allow time for information accumulation before a
decision is made and a response is produced. There-
fore, alteration of STN activity by STN-DBS in PD is
predicted to result in fast, impulsive responding when
faced with conflict.27

Behavioral inhibition is most commonly studied in
terms of its failure. This failure includes impulsivity,

perseveration, disinhibition, obsessions, and compul-
sions, symptoms that are features of different psychiat-
ric disorders. The STN has been shown to play a role
in these various forms of inhibitory failure. Impulsivity,
one of the symptoms associated with inhibitory deficits,
can take many forms. Responding fast without taking
time for reflection (impulsive action or reflection impul-
sivity), a preference for immediate small rewards rather
than delayed larger rewards (aversion to delayed gratifi-
cation), inability to withhold or delayed inhibition of
prepotent responses (delayed motor inhibition), and
engaging in more risky decision making (risk-taking)
are some of the characteristics of impulsive individu-
als.28,29 Various types of behavioral inhibition have
been distinguished, including reactive (e.g., stopping at
a zebra crossing when a motorbike approaches), proac-
tive (e.g., refrain from smoking when trying to quit),
global, and selective,30 with varying degrees of rele-
vance to impulsivity and other symptoms of psychiatric
disorders. Inhibition is also relevant to conflict resolu-
tion or in decision making and response selection under
conflict as these necessitate, inhibition of inappropriate,
habitual, or prepotent responses to allow selection of
the appropriate response.16,17

There are several experimental tasks commonly used
to measure motor inhibition. On the go no-go reaction
time task, participants respond on go trials when a go
stimulus is presented and withhold a response on
more infrequent no go trials. The stop signal task pro-
vides an estimate of the time for cancellation of a
response when a stop signal is presented with a vari-
able delay after a go signal that triggers the response.
The Eriksen flanker and the Simon tasks allow assess-
ment of how well participants can ignore irrelevant
stimuli and engage in response selection under conflict.
A number of cognitive tasks require executive and
inhibitory control over prepotent responses in order to
generate alternative strategic responses. Tasks such as
the Stroop color word interference task (color words
such as red, blue, and green are printed in incongruent
ink and participants have to name the color of ink
they are presented in) requires inhibition of the prepo-
tent response of reading the words to engage in the
alternative response of naming the color of ink they
are presented in. Similarly, in random number genera-
tion, participants have to inhibit the prepotent and
habitual response of counting in series and instead
generate responses in a random fashion.

Evidence From Animal Lesion Studies

The first study reporting the effects of STN lesions
on animal behavior was that by Whittier and Met-
tler31 showing ballism in the monkey. STN was little
studied before the end of the 1980s, when there was
renewed interest in the context of parkinsonism.
Then, Bergman et al.32 showed the beneficial effect
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of STN lesions in MPTP monkeys, restoring gross
motor behavior. When assessing more subtle motor
functions, it was established that STN lesions were
inducing nonmotor effects that were related to the
control of inhibition, given that they increased pre-
mature responding and perseverative behavior.33

Further studies have since shown that STN lesions
increased impulsivity, especially impulsive action
among the various possible forms of impulsivity (for
review of animal evidence, see a previous work34).

Animal studies showing inhibitory deficits following
STN lesions are summarized in Table 1. The most
common measures of impulsive action in the rat are
premature or perseverative responses. The 5-choice
serial reaction time task (5-CSRTT) is often used to
measure impulsive action.35 Rats are trained to detect
a brief visual stimulus presented in one of five aper-
tures and respond by a nose poke in it. The critical
issue is that the animal has to withhold its response
during a fixed (5s) or variable intertrial interval, lead-
ing to the possibility that the animal engages in
“impulsive action” while waiting for the imperative
cue. Bilateral lesions of the STN increase premature

responding on this task,36 as well as in various forms
of RT task33,37,38 or other behavioral tasks, such as a
decision-making task mimicking a gambling task or
the differential reinforcement at low rate task.39,40

Interestingly, pharmacological blockade or STN-
DBS do not always induce entirely similar results to
those observed after STN lesions. Muscimol infusion
into the STN, as well as bilateral STN-DBS increased
perseverative responses with no premature responses
in the 5-CSRTT41,42 or even decreased premature
responses depending on the parameters.43

In a go no-go RT task, when measuring the ability
of rats to withhold a prepotent response to a “no-go”
stimulus, STN lesions impaired the equivalent of a no-
go response.44 In the monkey, electrophysiological
recording has revealed that STN neurons show the
property to respond either specifically to go or no-go
trials, highlighting the involvement of STN in the inhi-
bition of undesired saccades and facilitation of selected
desired saccades.45 In a task developed to assess
reward-related activity, but measuring RT to withdraw
a lever, it was shown that the STN neuronal activity
recorded at the presentation of the cue light predicting

TABLE 1. Animal lesion or electrophysiology studies providing evidence for the role of the STN in inhibition arranged by
year of publication

Investigator Year STN Manipulation Task Effect

Baunez et al.33 1995 Bilateral STN lesion Simple RT Increased premature responses
Baunez and Robbins36 1997 Bilateral STN lesion 5-choice SRTT Increased premature and per-

severative responses
Baunez and Robbins42 1999 Bilateral STN muscimol 5-choice SRTT Increased perseverative

responses
Phillips and Brown37 2000 Unilateral STN lesion Simple vs. choice RT Increased premature responses
Baunez et al.38 2001 Bilateral STN lesion Simple vs. choice RT Increased premature

responses, perseveration on
previous response

Desbonnet et al., 200443 2004 Bilateral STN-DBS Choice RT Decreased premature
responses depending on
parameters

Winstanley et al.125 2005 Bilateral STN lesion Delay-discounting No discounting
Uslaner et al.39 2006 Bilateral STN lesion DRL Increased premature responses
Baunez et al.41 2007 Bilateral STN-DBS 5-choice SRTT Increased perseverative

responses
Eagle et al.44 2008 Bilateral STN lesion Stop-signal RT task Increased errors (impaired stop

of an ongoing response)
Eagle et al.126 2008 Bilateral STN lesion Equivalent Go-NoGo (stop task

with 0 delay)
Impaired no-go

Isoda and Hikosaka78 2008 Recording STN neurons Go-NoGo (monkey) Different responses at NoGo
than Go

Lardeux et al.127 2009 Recording STN neurons Reward (4% vs 32% sucrose)
cued RT task (rat)

Responses at cue light predic-
tive of future premature
response

Aleksandrova et al.40 2013 Bilateral STN lesion Gambling task for rats Increased premature responses
Schmidt et al.47 2013 Recording STN neurons stop-task (rat) Delayed response to stop

signal
Lardeux et al.46 2013 Recording STN neurons Reward (cocaine vs. sucrose)

cued reaction time task (rat)
Responses at cue light predic-
tive of future premature
response

SRTT: Serial reaction time task.
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the reward (sucrose or cocaine) could be predictive of
future early withdrawal of the lever in case of an acti-
vation, whereas inhibition after the cue was predictive
of a correct response.46 This further supports the role
of the STN in the control of inhibition.

On a modified stop signal task, STN lesions in rats
impaired the stopping behavior, even when the stop sig-
nal was presented very early in the trials (even with
zero delay, which is equivalent to a no go trial).44 A
recent electrophysiological study in rats47 showed that
STN neurons had low latency responses to the stop
cue, regardless of whether or not the animal was able
to stop the go response, suggesting that the STN pro-
vides fast signals to stop action. In contrast, SNr neu-
rons only responded to stop signals on successfully
inhibited trials, whereas striatal neurons were active on
presentation of go, but not stop, signals. It was pro-
posed that the results support the interactive race
model, with the relative timing of the distinct inputs to
the SNr from the striatum or STN, respectively, deter-
mining stopping failure and success. Perhaps a missing
component in earlier works is the contribution from
the GPi and SNr47,48 to such a stopping process, given
that these final output pathways convey the final signal
through the thalamus back to the cortex before an
action is withheld or exerted.

Evidence From Imaging and Transcranial
Magnetic Stimulation Studies

Previous lesion studies in humans49,50 investigating
inhibition revealed causal roles of the right inferior
frontal cortex (IFC), the pre-SMA, and SMA proper.
Imaging studies have identified brain networks
involved in stopping actions, including frontal regions
together with subcortical areas, such as the STN or
caudate.51-54 Table 2 provides a summary of the imag-

ing studies that have revealed activation of the STN
during motor inhibition. A functional MRI (fMRI)
study used a conditional stop signal paradigm to
investigate the functional networks involved in motor
inhibition and conflict resolution.51 They first used
diffusion-weighted imaging (DWI) to show connec-
tions between the pre-SMA, IFC, and STN.51 The
results showed that a similar network was activated
during both response inhibition and conflict resolu-
tion, involving the right pre-SMA, right IFC, and right
STN regions. The IFC and STN activity correlated
with each other, and the measure of behavioral inhibi-
tion, the stop signal reaction time (SSRT), and were
considered key nodes in the inhibition network. The
STN was also shown to be particularly engaged by
late inhibition, as reflected by correlations of STN
activation with longer stop signal delays.54

Some theoretical and computational models predict
that stopping is achieved by a top-down control net-
work between the IFC and the STN using the hyper-
direct route.27,55-57 However, there is controversy
about this proposal, given that inhibition has also
been shown to be implemented through the indirect
pathway between the striatum and the output struc-
tures of the basal ganglia, by way of the
STN.47,53,58,59 Using effective connectivity, the STN
was shown to receive information from the IFC to
interrupt activity through the hyperdirect path-
way.56,57 Moreover, joint function of the pre-SMA
and striatum52 as well as the STN60 become important
in highly demanding conditions where speed and accu-
racy behavioral adjustments are required, which, con-
nectivity analysis suggest, rely on the indirect
pathway.57 Evidence suggests that the striatum and
the indirect pathway are involved in stopping behav-
iors proactively or selectively,59 whereas global

TABLE 2. fMRI studies showing significant STN activation in relation to motor inhibition arranged by year of publication

Investigators N Task Details Contrast Showing STN Activity Main Findings

Aron and Poldrack, 200654 18 HC 2-choice stop signal: 25% stop
trials auditory stop signal, stair-

case tracking procedure

StopInhibit>Null; StopInhibit>go
StopRespond>null

Go RTs activated frontal, striatal, pal-
lidal, and motor regions, Stop right
IFG, pre-SMA, GP, and STN. Longer
stop delays, produced greater STN
activation.

Aron et al., 200751 15 HC Conditional stop signal task, 25%
stop trials, auditory stop signal,
staircase tracking procedure

StopInhibit>go (critical direction)
StopRespond>Go (noncritical)

rIFG1rSTN more activated with faster
SSRT; pre-SMA more active in con-
flict trials; IFG-STN role in stopping;
STN had correlations with IFG pars
triangularis.

Li et al., 200853 30 HC Simple RT stop signal task, visual
stop signal, staircase tracking
procedure

Long>short SSRT STN greater activity in long SSRT and
stop errors trials; head of caudate
activation with faster SSRT; correlated
with pre-SMA

Forstmann et al., 2012128 13 HC Stop signal task, auditory stop
signal, staircase tracking
procedure

Probability maps of STN
peak activation

Medial prefrontal cortex had greater
functional connectivity with the STN
during response inhibition.

IFG, inferior frontal gyrus.
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inhibition may be achieved through the hyperdirect
pathway.48

To address the question of which corticosubcortical
pathways mediate motor inhibition, the use of trans-
cranial magnetic stimulation (TMS) combined with
imaging allows for direct testing of causal influences
from cortical regions to subcortical networks and
pathways during response inhibition. Increased right
striatal and decreased motor cortex activity was found
after TMS was applied over the right IFC and pre-
SMA.61. Another combined TMS and imaging study
during a stop signal task showed that TMS to the
right pre-SMA was associated with significant activa-
tion of the left pre-SMA.62 Finally, a study examined
correlations between TMS effect sizes (between motor
cortex and the pre-SMA and IFC) and white matter
connecting pre-SMA and IFC to STN63 during a
switching task and reported significant correlations
with the STN (at a latency of 12 ms).

Several imaging studies have examined the effects of
STN-DBS on patterns of brain activation during per-
formance of cognitive tasks requiring inhibitory and
executive control in PD patients. These have shown
that switching STN stimulation on is associated with
significant decreased activation in key frontal areas,
including the pre-SMA, IFC, dorsolateral prefrontal
cortex, and anterior cingulate cortex, during tasks that
require inhibitory and executive control for response
selection under conflict and suppression of habitual or
prepotent responses, such as the Stroop,64 fast-paced
random number generation (RNG),65 or the go no-go
task.66

In summary, imaging and TMS studies have identi-
fied the pre-SMA and IFC as critical cortical areas and
highlighted the importance of both the indirect and
hyperdirect basal-ganglia-cortical pathways when an
action needs to be cancelled.

Evidence From Electrophysiological Studies in
PD Patients Undergoing STN-DBS Surgery

The implantation of electrodes for DBS in the STN
has allowed the recording of STN activity in PD
patients. Intraoperative microrecordings help to
improve STN localization before DBS implantation
and offer an excellent window to explore neuronal
responses to motor or cognitive tasks. In addition, the
DBS electrode can also be used to record local field
potential (LFP) activity from the STN during surgery
or, more usually, in the immediate postoperative phase
before internalizing the connection cables and the
implantable pulse generator. Most of the direct neuro-
physiological evidence of the STN role in inhibition
comes from postoperative studies, given that these
allow longer recording times.

Recent studies from three groups67-69 have specifi-
cally looked for changes in STN LFP activity during

stop signal tasks. The changes observed, which con-
firm the role of the STN in motor inhibition, involve
the three most relevant bands described in STN activ-
ity: beta, gamma, and theta.

Despite some methodological differences, the three
studies show parallel results in the beta band (Fig.
1A,C.D). A voluntary movement is usually accompa-
nied by a decrease in beta activity in the STN. This
decrease begins before the movement, reaches its mini-
mum value shortly after the movement has begun, and
is followed by a “rebound” after the movement is
completed.68 This pattern was observed in the three
studies in the “go” trials. However, in the “stop” tri-
als, when the patient successfully inhibited the
response, the beta decrease was consistently smaller,
faster, and shorter. This difference in beta activity
between these two types of trials (Fig. 1C, bottom)
strongly suggests that beta-band subthalamic activity
is involved in reactive inhibition. Similar inhibition or
conflict-resolution–related beta changes have been
found in go no-go and Stroop tasks, using similar
postoperative LFP recordings.70,71 Additionally, beta
activity might also have a role in proactive inhibition.
Benis et al.68 added an additional type of trial to the
stop signal task, a group of trials in which the patient
knew that there would be no stop signal (named go-fast
trials). When beta changes were compared between the
go (where occurrence of a stop signal on a proportion of
trials was possible) and the go-fast trials, the beta
decrease was deeper in the go-fast condition (Fig. 1E).
This difference may indicate that a higher level of beta
activity is also related to proactive inhibition, given that
its decrease is smaller when the patient expects that
there may be a stop signal indicating inhibition of the
response (go trial), than when he or she knows for cer-
tain that there will be no stop signal (go fast trial).

Gamma changes in the STN were also investigated
using the stop signal task in two of these studies.67,69

A voluntary movement is accompanied by a gamma
increase in the STN, which is proportional to the
motor effort.72 Alegre et al.69 found that in the go
and failed stop trials in the “on” motor state, there
was a gamma increase around the time of the motor
response (as expected), whereas in the stop-inhibit tri-
als (successful inhibition trials), there was a decrease
in gamma activity (Fig. 1B). In line with these find-
ings, Ray et al.67 also described a higher gamma
increase during failed stop trials than during success-
fully inhibited trials, although the difference was not
statistically significant. These results again suggest the
existence of an active process in the STN related to
the presence of the stop signal and the successful inhi-
bition of the response. The suppression of gamma
activity may be related to the suppression of the inten-
tion to move and indeed could represent the physio-
logical marker of the braking or hold your horses
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function attributed to the STN.55 Moreover, whereas
beta corticosubthalamic coherence appears to be
cortex-driven, gamma coherence is probably STN-
driven or bidirectional.73,74 Additionally, the failure to
inhibit gamma activity during successful inhibition on
the stop signal task in patients with ICDs69 may sup-
port a direct relationship between modulation of the
gamma band and impulsivity.

On two tasks requiring inhibition of inappropriate
(verbal fluency) or habitual (random number generation)
prepotent responses, increased STN gamma band activity

was observed, which positively correlated with measures
of switching (verbal fluency) and controlled processing
and negatively with measures of automatic processing
(random number generation).75,76 The increased STN
gamma band activity observed in these studies may reflect
the switch from automatic to controlled processing on
these attention- and resource-demanding cognitive tasks,
consistent with the proposal that the STN implements a
signal from the prefrontal cortex to switch from automatic
to controlled processing, as necessitated by task demands
or context.77,78

FIG. 1. Beta- and gamma-band activity in LFPs recorded from the STN in patients with PD during performance of stop signal RT tasks. (A and B)
Beta (A) and gamma (B) relative power changes during different trial types in Alegre et al. (2013).69 (C) Beta z-score change values during different
trial types in Ray et al. (2012). (D) Beta relative amplitude changes during stop and go trials in Benis et al. (2014). (E) Beta relative amplitude
changes in go and go-fast trials in Benis et al. (2014). During the go trials (Go-response in A, Go in C, and GO(lm) in D), in which there is no stop
signal, beta activity shows a marked decrease that begins after the go signal and is followed by a small rebound over baseline. During stop trials
(Go-stop-inhibit in A, Stop: inhibited in C, and ST(s) in D), in which the response is successfully inhibited after a stop signal, the beta decrease is
faster (peaks earlier), shorter, and smaller. In the trials with a stop signal in which the patient could not stop (Go-stop-response in A and Stop: failed
in C), the beta changes are intermediate between the other trial types. This result has been consistently observed in different studies despite the dif-
ferences in paradigms and measures (relative power in A, Z-score in C, relative amplitude in D, go signal as trigger in A and C, and stop signal as
trigger in D). Gamma activity in Alegre et al. (2013) (B) showed a different behavior in go and stop trials: Although there was an increase in go trials
(go-response), a decrease was observed in successful stop trials (go-stop-inhibit). These differences were only noted in the “on” motor state. Benis
et al. (2014) also studied the relationship of beta activity and proactive inhibition, comparing go trials with and without stop signal presentation after
the go signal (Go [G] and Go-fast [GF] trials, respectively). When the patient knew that there would not be any stop signal, the beta decrease was
more intense (E). Note that panel (A) and (B) trial types refer to Go-Stop-Response or Go-Stop-Inhibit, whereas panel (C) similar trial type is referred
as STOP:failed or STOP:inhibited, respectively. (A) and (B) are adapted from Alegre et al. (2013; with permission); (C) is adapted from Ray et al.
(2012; with permission). (D) and (E) are adapted from Benis et al. (2014; with permission).68
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Theta-band activity has been related to decision con-
flict, both in the frontal cortex and in the STN. The
potential role of the STN in this regard is also sup-
ported by the findings of a conflict-related increase in
firing rate in an intraoperative study using a probabilis-
tic decision task.79 More direct evidence relating STN
LFP low-frequency activity to impulsivity and presence
of ICD in PD has been provided in two studies. In PD
patients with preoperative ICDs, theta activity in the
STN was maximal in ventral electrodes, in agreement
with impulsivity-related oscillatory changes80 and
behavioral effects of DBS.81,82 The results of Rosa
et al.83 directly related low-frequency STN activity to
adoption of risky strategies in patients with PD and
pathological gambling. Thus, the current neurophysio-
logical evidence strongly suggests that the STN is
involved in inhibition, but does not conclusively dem-
onstrate that it leads the cortex in inhibition.

Evidence From Experimental Studies of
STN-DBS or Subthalamotomy in PD

Major aspects of cognition are not affected by STN-
DBS.25,26,84,85 However, on a range of experimental
tasks, a number of studies have reported that STN-
DBS is associated with deficits in inhibitory and execu-
tive control, resulting in impulsive action. For exam-
ple, STN-DBS has been associated with deficits on a
variety of tasks that require conflict resolution,
response selection under conflict, and inhibition of
prepotent responses, including the Stroop,86,87

RNG,65 probabilistic decision making,27,88,89 go no-
go,66,90 stop signal task,91-93 and the Simon effect94

(for details, see Table 3). In addition, on the “moving
dots” perceptual decision-making task, STN-DBS in
PD lowered response thresholds, resulting in fast, but
errorful, responses with stimulation switched on dur-
ing high-task difficulty95 or when acting under time

TABLE 3. Studies of the effects of DBS-STN in PD on tasks involving inhibition of prepotent or habitual responses,
response selection under competition, or decision making under conflict, arranged by year of publication

Investigator Year

Medication

Status Worse With STN-DBS Unchanged With STN-DBS Improved With STN-DBS

Jahanshahi86 2000 Off Stroop interference task
Schroeder64 2002 Off Stroop interference task
Hershey90 2004 Off Go no-go RT with high

target frequency
Go no-go RTs with lower
target frequency

Van den Wildenberg92 2006 On Go no-go RTs Stop Signal RT task
Witt87 2006 On Stroop interference task
Thobois65 2007 Off Fast-paced RNG
Castner129 2007 On Picture Word

Interference Task
Hayling Sentence
Completion Task

Frank27 2007 On Probabilistic decision making
under high conflict

Castner130 2008 On Greater errors on noun-noun
and verb-verb generation tasks, and
latter deficit correlated with item
selection constraint

Campbell131 2008 Off Go no-go RTs
Ballanger66 2009 Off Go no-go RT
Ray91 2009 On Stop signal RT Task
Wylie95 2010 On Simon Task—fast responses Simon Task—slow

responses
Hershey97 2010 Off Go no-go RT—with ventral

STN-DBS
Greenhouse98 2010 On Stop Signal RT Task—DBS of

ventral vs. dorsal contacts
Yugeta132 2010 On Antisaccade task Memory-guided saccades
Swann133 2011 On Stop Signal RT task
Mirabella134 2011 Off Stop Signal RT task
Cavanagh89 2011 ? Probabilisitic decision making under

high conflict
Coulthard88 2012 On and Off Probabilistic decision making requiring

integration of conflictual information
Favre124 2013 On Release of proactive

inhibition in
unwarned simple RT

Obeso93 2013 On Conditional Stop Signal RT Task
Green95 2013 On Moving Dots Task
Pote96 2014 On Moving Dots Task
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pressure.96 However, as evident from Table 3, not all
studies involving inhibitory processing have shown
deficits with STN stimulation. Variations in the nature
and prepotency of the response (e.g., percent of go tri-
als in a go no-go or stop signal task) and the precise
active contact position in the STN97,98 are likely to
account for some of the differences in results across
studies. Another important consideration is the nature
of impulsivity being studied. Other than deficits in
motor inhibition summarized in Table 3 and increased
loss-chasing in a gambling task,135 investigators have
not found any detrimental effects of STN-DBS on
other features of impulsivity and risk taking.136,137

More direct and “causal” evidence of the role of the
STN in inhibitory and executive control comes from a
handful of studies of subthalamotomy in PD. Postsub-
thalamotomy deficits on the Stroop in 30% of the PD
patients and deterioration in release from proactive
inhibition on a memory test, with normal performance
in 98% of the sample before and 50% of the sample
after surgery, have been reported.99,100 In a recent
study, Obeso et al.101 used the conditional stop signal
task to investigate the role of the STN in reactive and
proactive inhibition and conflict resolution and in
adjusting response thresholds and speed-accuracy
trade-offs. Patients with right subthalamotomy had
significantly faster Go RTs, but made significantly
more discrimination errors with their contralesional
hand than the unoperated PD patients (see Fig. 2A,B),
suggesting that right subthalamotomy influenced
speed-accuracy trade-offs. The patients with right sub-
thalamotomy could not engage in late-phase, fast inhi-
bition of the response and showed minimal proactive
inhibition when tested with the contralesional hand.

These results provide strong evidence that the STN is
involved in response inhibition.

Evidence From Psychiatric Side Effects of
STN-DBS or Subthalamotomy in PD

STN lesions lead to the “syndrome of the body of
Luys,” a mixture of hemichorea-hemiballism, typically
accompanied by nonmotor behavioral complica-
tions.102 The marked involuntary movements led to
the clinical concept of the STN as a motor control
nucleus.103 Hemiballism tends to improve over time,
but it can more rarely persist as a permanent sequelae,
which can be improved by pallidotomy or pallidal
DBS.104,105

Behavioral side effects, such as hypomania, hyper-
sexuality, logorrhea and disinhibition of mood and
euphoria, impulsivity, and aggression, have been
described to accompany hemiballism in spontaneous
STN lesions in humans.106-108 Following bilateral sub-
thalamotomy in PD, “hyperactive” behaviors, such as
disinhibiton, euphoria, and irritability, transiently
increased and their course of evolution was similar to
the postoperative increase in dyskinesias.109

In PD patients treated with STN-DBS, disinhibition
of complex behavioral programs, such as mirthful
laughter, mania, depression, intermittent explosive dis-
order, kleptomania, emotivity, creativity, and new-
onset ICDs (hypersexuality, pathological buying, path-
ological gambling, and bulimia), are compatible with
the role of the STN in control and release not only of
motor plans, but also of nonmotor behaviors (for
review, see previous works110,111). Some of these
STN-induced behaviors represent disinhibition or

FIG. 2. (A) The mean “critical” Go RTs for the contralesional hand of the patients with PD right or left subthalamotomy (R STN, L STN) and
the dominant hand of the unoperated patients with PD and healthy control participants. Error bars are standard errors of the mean. *P < 0.05.
(B) Mean discrimination errors with the contralesional hand for the patients with PD with right or left subthalamotomy (R STN, L STN) and
the dominant hand for the unoperated patients with PD and healthy control participants. Error bars are standard errors of the mean.
*P < 0.05. Reproduced from Obeso et al. (2014; with permission).101
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failure of executive control over prepotent responses.
Current spread to the associative and limbic territories
have been postulated to explain these stimulation-
induced behavioral disinhibitions, in the same way
that lesions of the STN motor territory induces
hemichorea-hemiballism through the functional inhibi-
tion of deafferentation.110,112,113

Postoperative apathy as a frequent non-voltage-
dependent complication, which appears with chronic
STN-DBS in the weeks or months after surgery,114-117

seems to contradict the theory of “releasing the brake”
or disinhibition of nonmotor behavior. However, it
can be convincingly shown that postoperative apathy
is not directly related to STN-DBS, but rather the con-
sequence of the marked reduction in dopaminergic
treatment allowed by motor improvement, which can
unmask hypodopmainergic symptoms, such as apathy,
depression, and anxiety, related to dopaminergic
denervation of the mesolimbic and -cortical dopami-
nergic projections from the midbrain substantia nigra
and ventral tegmental area. The fact that this postop-
erative withdrawal syndrome is predicted by preopera-
tive nonmotor fluctuations, correlates with the extent
of mesolimbic denervation, and is reversible with rein-
troduction of a D2-D3 dopamine agonist with a rela-
tive selectivity for the mesolimbic dopaminergic
system clearly indicates that postoperative apathy is
not directly related to STN-DBS itself, but rather cor-
responds to the unmasking of hypodopaminergic non-
motor symptoms of the disease.117-119

New-onset ICDs as a stimulation-related side effect
have been observed in retrospective series as a compli-
cation after STN-DBS surgery in PD.81,82 Closer
examination of the published literature reveals that
such “chronic or even permanent” postoperative ICDs
mainly occur in those patients who remain on high-
dosage dopaminergic treatment after surgery in addi-
tion to STN-DBS.81 In two prospective studies in large
patient cohorts, with a marked decrease in dopaminer-
gic treatment, there has been a virtual disappearance
of ICDs with the single exception of binge eat-
ing.118,120 This improvement in preoperative hyperdo-
paminergic behaviors after surgery has been explained
by postoperative desensitization following the decrease
in dopaminergic treatment.110

Behavioral disinhibition with a high incidence of
transient appearance of hypomania or even mania has
also been reported in patients with obsessive-
compulsive disorder (OCD) treated by STN-DBS
directly targeting its limbic territory.113 In OCD, the
situation is easier to interpret given that, contrary to
PD, there is no simultaneous change in psychotropic
dopaminergic treatment. STN-DBS-induced hypoma-
nia or mania in OCD are always reversible with a
decrease in stimulation parameters, but the therapeutic
window may be rather narrow, suggesting that it
might be this behavioral disinhibition that allows the

patient to become free of obsessions and compul-
sions,121 likely mediated by the orbitofrontal cortex
directly projecting to the STN through the hyperdirect
corticosubthalamic pathway.21

Conclusions and Future Directions

As reviewed above, there is now evidence, from a
variety of sources, that the STN plays a role in inhibi-
tory control for response selection under conflict and
adjusting response thresholds during decision making
under conflict or time pressure. Consequently, there is
also empirical support indicating that STN-DBS or
subthalamotomy in PD can be associated with a host
of behavioral and psychiatric problems that reflect def-
icits in inhibitory control and give rise to certain types
of impulsivity.

What remains unclear from the behavioral STN-
DBS on versus off studies, imaging, and electrophysio-
logical evidence is whether it is conflict per se,122

choice difficulty,79,95 the appetitive/aversive valence of
the choices,27 adoption of a risk-taking strategy,83

information integration,88 or acting under time pres-
sure96 that influence STN activity and adjustment of
response thresholds. Future studies are required to
refine which contacts or stimulation frequencies alter
inhibition and thus will contribute to a better under-
standing of the current inconsistent results with
improvement versus worsening of executive and inhib-
itory control on different tasks after STN-DBS.
Because many of the tasks on which STN-DBS-
induced deficits in inhibitory and executive control
have been found, as well as necessitate inhibition of
automatic prepotent or habitual responses and alterna-
tive engagement of strategic response selection,77 a
parsimonious and speculative explanation may be the
need for allocation of more attentional resources. Such
a formulation would be consistent with the proposed
role of the STN in implementation of a frontally sig-
naled switch from automatic to controlled processing,
as suggested by Isoda and Hikosaka,78 the attentional
deficit after STN lesion in animals,33 and the increased
gamma-band activity observed in STN LFPs during
attention-demanding cognitive tasks,75,76 as well as
the fact that, in some studies, STN-DBS-induced defi-
cits were only observed for tasks with high cognitive
control demands90 or motivational salience.27

To date, the main focus has been on the role of the
STN in reactive and global inhibition, and few studies
have investigated proactive or selective inhibition,
with exceptions.101,123,124 Certainly, this is an imbal-
ance that needs to be addressed in the future. Simi-
larly, despite ample evidence for psychiatric problems
suggestive of disinhibition following STN surgery in
PD, with the exception of the two studies showing an
association between STN LFP activity and ICDs in
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PD,80,83 no efforts have been made to directly link the
psychiatric sequelae of STN surgery to deficits in
inhibitory control. Provision of such direct evidence is
important from both clinical and theoretical perspec-
tives. The results linking low-frequency STN activity
functions to ICDs impulsivity in PD79,82 open up a
new avenue of research, which allows for merging the
roles of the STN in selection and motivational sali-
ence, which could potentially enhance our understand-
ing of ICDs in PD as well as the roles of the STN in
humans.
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