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Neuropsychological and clinical heterogeneity of cognitive 
impairment and dementia in patients with Parkinson’s disease 
Angie A Kehagia, Roger A Barker, Trevor W Robbins

Cognitive impairment in patients with Parkinson’s disease is gaining increased clinical signifi cance owing to the 
relative success of therapeutic approaches to the motor symptoms of this disorder. Early investigations contributed to 
the concept of subcortical dementia associated with bradyphrenia and cognitive rigidity. For cognition in parkinsonian 
disorders, this notion developed into the concept of mild cognitive impairment and fronto-executive dysfunction in 
particular, driven mainly by dopaminergic dysmodulation and manifesting as defi cits in fl exibility, planning, working 
memory, and reinforcement learning. However, patients with Parkinson’s disease could also develop a syndrome of 
dementia that might depend on non-dopaminergic, cholinergic cortical dysfunction. Recent fi ndings, supplemented 
by advances in neuroimaging and genetic research, reveal substantial heterogeneity in the range of cognitive defi cits 
in patients with Parkinson’s disease. Remediation and management prospects for these cognitive defi cits are based 
on neuropharmacological and cognitive rehabilitation approaches. 

Introduction 
Parkinson’s disease is a progressive neurodegenerative 
disorder diagnosed on the basis of characteristic motor 
disturbance (bradykinesia, resting tremor, rigidity, and 
postural instability), asymmetrical symptom onset, and 
good response to levodopa.1 As a synucleinopathy, 
Parkinson’s disease is linked to the pathogenetic 
fi brillisation of the unstructured soluble protein 
α-synuclein and the formation of Lewy bodies in nigral 
regions, limbic and brainstem nuclei, and neocortical 
regions,2 although neurofi brillary tangles and plaques 
are also commonly present in these regions.3 Neuronal 
degeneration directly aff ects catecholaminergic 
(ie, dopamine and norepinephrine) and cholinergic 
(acetylcholine) neurotransmission. Parkinson’s disease 
aff ects one out of 100 people who are aged older than 
60 years in industrialised countries.4 Cognitive 
impairment, in the form of executive defi cits, visuospatial 
and memory defi cits, and clinically evident dementia, 
seems to be an independent non-motor aspect of the 
disorder that has an important role in establishing 
functional outcome; Parkinson’s disease dementia is a 
crucial determinant of reduced life expectancy in patients 
with this movement disorder.5 

The frequency and severity of cognitive decline caused 
by Parkinson’s disease and its implications for clinical 
management emphasise the need to approach this 
impairment as a symptom that requires separate attention 
and targeted treatment. As a movement disorder, motor 
dysfunction is probably the most burdensome symptom 
for patients with Parkinson’s disease. However, the 
relative success in managing this symptom, owing to the 
development of eff ective pharmaceutical regimens 
focusing on dopamine restoration, might enable a shift in 
attention so that the non-motor, cognitive features of 
Parkinson’s disease can now also be eff ectively addressed. 
Increased focus on the non-motor symptoms is essential 
for assessing and treating the disease-specifi c and drug-
induced psychiatric symptoms, such as depression or 
hallucinations, many of which are closely linked to the 

cognitive symptoms and features of Parkinson’s disease. 
Increasing evidence suggests that the neuropsychological 
defi cits seen early in the course of the disease might also 
be a powerful predictor of the overall progression of 
cognitive dysfunction to dementia, with implications for 
early pharmacological intervention.

In this Review, we discuss the clinical manifestations 
and neurochemical features of cognitive impairment in 
patients with Parkinson’s disease, outlining axes of 
cognitive disturbance. The emerging concept of 
heterogeneity at the levels of cognition and underlying 
neurochemistry, possibly a consequence of the 
cytologically and structurally diverse neural damage 
caused by the disease and its interactions with the ageing 
process, is supported by evidence from neuro-
psychological, pharmacological, neuroimaging, and 
genetic research. First, we concentrate on defi cits in 
executive control—mechanisms by which performance 
is optimised under conditions requiring the operation of 
several cognitive processes. Thus, defi cits in cognitive 
fl exibility, planning, working memory, and learning 
appear early in Parkinson’s disease and are similar to 
symptoms in patients with frontal lobe injury. In these 
manifestations of what can be broadly characterised as 
a fronto-striatal syndrome, defi cits in the catechol-
aminergic, particularly dopaminergic, pathways are 
prominent. These aspects of cognitive dysfunction 
in patients with Parkinson’s disease are commonly 
thought to be a prodrome to dementia, but their 
association with Parkinson’s disease dementia might not 
be one of simple linear progression. Second, we discuss 
the pathological basis of the neuropsychological and 
debilitating clinical symptoms of dementia in patients 
with Parkinson’s disease and the eff ect of non-
dopaminergic, mainly cholinergic, pathological changes 
in extra-striatal regions.6 Finally, we review the clinical 
management of patients with Parkinson’s disease and 
cognitive dysfunction, including dementia, with regard 
to its heterogeneous nature in terms of new drugs and 
non-pharmacological interventions. 
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Cognitive impairment in Parkinson’s disease 
Neuropsychological defi cits 
Controversy has surrounded the concept of cognitive 
defi cits in Parkinson’s disease since the 19th century. 
Contrary to James Parkinson’s description7 in 1817 of 
“the senses and intellects being uninjured”, Charcot,8 
who named the disease after Parkinson, emphasised 
that “the mind becomes clouded and the memory is 
lost”. More generally, the concept of mild cognitive 
impairment, typically used to characterise a transitional 
cognitive status from normal ageing to dementia, is 
used in Parkinson’s disease as an umbrella term for the 
diverse neuropsychological defi cits within the executive, 
mnemonic, and visuospatial domains.9–12 Patients who 
have been newly diagnosed with Parkinson’s disease 
are twice as likely to develop mild cognitive impairment 
than are healthy elderly individuals.13,14 Between 20% 
and 57% of patients are aff ected by mild cognitive 
impairment within the fi rst 3–5 years after diagnosis;15–17 
therefore, this defi cit deserves particular attention 
because of its potential predictive association with 
dementia.

Patients with Parkinson’s disease who do not have global 
cognitive decline have similar patterns of impairments to 
those in patients with frontal lobe lesions, as assessed by 
use of tasks such as the Wisconsin card sorting test, the 
Odd-Man-Out test, and the Tower of London test,18–21 which 
index executive functions such as planning, concept 
formation, rule use, and working memory (the mechanism 
by which information is held and manipulated ‘online’). 
These fi ndings contributed to the emerging concept of 
Parkinson’s disease as a fronto-striatal syndrome that gives 
rise to defi cits that are particularly apparent when patients 
need to generate behaviour on the basis of internal rather 
than external cues22,23 and when they need to fl exibly switch 
between well learned tasks.24,25

In the next sections, we further discuss the 
manifestations of executive dysfunction revealed by 
neuropsychological testing (table 1) and the varied eff ects 
of dopaminergic restoration (panel 1). Although motor 
symptoms26 and mood status, particularly depression,27 
have a predominantly negative eff ect on quality of life, 
executive defi cits have real-world implications. Diffi  culties 
in planning during the Wisconsin card sorting test are 
associated with health status.28 Executive impairment can 
be disabling as it interferes with social and occupational 
functioning; patients report reduced organisational skills, 
impaired concentration, and problems with retaining 
information while undertaking daily tasks.29 

Dopaminergic nature of the fronto-striatal 
dysexecutive syndrome 
As well as relief from many of the motor symptoms of 
Parkinson’s disease, dopaminergic enhancement—with 
the use of levodopa, dopamine receptor agonists 
(generally the D2 subtype), monoamine oxidase type B 
inhibitors, and catechol-O-methyltransferase (COMT) 

inhibitors—has a parallel restorative eff ect on certain 
aspects of cognition. Evidence of dopamine-dependent 
cognitive defi cits was initially based on reports of 
selective benefi cial eff ects of drugs on tasks sensitive to 
frontal lobe dysfunction, either by comparing newly 
diagnosed (untreated) and treated patients with mild 
disease or by temporarily withdrawing patients from 
their dopaminergic regimens.30–33 The cognition-
enhancing eff ects of dopaminergic drugs in patients 
with Parkinson’s disease broadly encompass aspects of 
cognition that involve fl exibility, for example during 
planning on the Tower of London test, switching 
between well learned tasks,24 response inhibition 
particularly during periods of uncertainty,34,35 and 
working memory,32,36,37 which tap into fronto-striatal 
dopamine pathways.

By contrast with this dysexecutive syndrome, 
visuospatial function during mental rotation38 and 
visual recognition memory, conditional associative 
learning, and verbal memory—amnestic features of 
parkinsonian mild cognitive impairment, particularly 
as a function of increasing clinical disability and disease 

Type of defi cit Function

Wisconsin card sorting test 
Tower of London test

Executive Attention
Working memory
Planning
Concept formation
Rule use
Cognitive inhibition
Use of feedback

Task switching Executive Cognitive fl exibility
Response inhibition
Attention
Resistance to distractibility or set maintenance

Stroop performance Executive Attention
Response inhibition

Attentional set-shifting Executive Attention
Higher-order fl exibility (stimulus dimensions)
Use of feedback
Resistance to distractibility/set maintenance

Reversal learning Learning Use of feedback
Lower-order fl exibility (stimulus exemplars)

Weather prediction Learning Use of feedback
Attention
Working memory
Rule formation
Abstract reasoning

Gambling or decision making Impulse control Use of feedback
Response inhibition

Digit span Memory Working memory (numbers)

Spatial working memory Memory Working memory (spatial representations)

Stop signal task Motor inhibition Response inhibition

Delayed responding Motor inhibition Attention
Resistance to distractibility

Mental rotation Visuospatial Motor imagery
Visuospatial transformation

Characteristic aspects of mild cognitive impairment usually seen in patients receiving drug treatment.

Table 1: Fronto-executive defi cits in early Parkinson’s disease by neuropsychological task 
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duration39,40—seem to be dopamine-independent and 
unaff ected by medication status. Dopaminergic 
restoration, however, might also have deleterious eff ects 
on a diff erent subset of cognitive functions reliant on 
learning by integrating environmental feedback with 
ongoing behaviour. 

The dopamine overdose hypothesis 
Results from early studies indicated that dopaminergic 
remediation can impair some aspects of cognition, 
mostly by overdosing the caudate nucleus and ventral 
striatum, which are generally less dopaminergically 
depleted early in the disease.41 By contrast, the putamen 
is more aff ected by the primary dopaminergic defi cit and 
is implicated in the motor symptoms of Parkinson’s 
disease. Thus, by optimally titrating the dose of levodopa 
to ameliorate the motor symptoms, the ventral striatum 
and mesocortical dopaminergic pathways might be 
subject to an eff ective overdose.31,42 Dopaminergic dosing 
that restores dopamine concentrations in the severely 
depleted dorsal regions is thought to improve those 
aspects of cognition that rely on dorsal fronto-striatal 
circuitry; however, this dosing leads to side-eff ects on 
cognitive functions for which ventral striatal dopamine 
signalling, particularly the nucleus accumbens and 
associated fronto-striatal loops with the orbitofrontal 
cortex, is key. In support of this hypothesis, impulsive 
responding and failure to switch to a newly rewarded 
stimulus when the currently selected one is no longer 
associated with reward (reversal learning) is reported in 

patients receiving treatment but not in untreated 
patients;42–45 this eff ect is associated with a blood-oxygen-
level-dependent (BOLD) signal change on functional 
MRI in the nucleus accumbens but not in the dorsal 
striatum or frontal cortex.46 Dopaminergic overdose has 
been linked to increased impulsivity and abnormal 
betting in a gambling setting.24 In this regard, dopamine 
agonists such as pramipexole have been implicated in 
pathological gambling and dysfunction in impulse 
control sometimes seen in patients with Parkinson’s 
disease,47,48 possibly by dopamine receptor activation 
outside the dorsal striatum (see also below). 

The dopamine overdose rationale is central to 
understanding drug-induced cognitive defi cits in 
patients with Parkinson’s disease, which are typically 
observed during learning tasks in general, not just 
reversal learning. Patients with Parkinson’s disease often 
have impairments during concurrent learning tasks for 
which many stimulus-outcome associations are learnt 
over the course of several attempts by trial-and-error 
feedback,49 rather than by direct observation of the 
correct stimuli.50,51 Feedback-based behaviour implicates 
the mesocortico limbic dopamine system, which includes 
the ventral striatum and amygdala. As such, 
dopaminergic drugs have been associated with adverse 
eff ects on learning in early Parkinson’s disease52 with 
subtly diff erent eff ects observed depending on the 
valence (positive/negative) of the feedback learning 
signal.53,54 Global increases in tonic dopamine that might 
obscure phasic stimulus-specifi c dopamine signals from 
error-correcting feedback, essential to the incremental 
acquisition of stimulus-outcome associations,55 might 
give rise to this defi cit. 

Whereas drug-induced cognitive defi cits are mainly 
associated with the context of depleted versus intact 
striatal regions, other defi cits, such as distractibility, 
might stem from upregulated frontal dopaminergic 
transmission in early Parkinson’s disease in response to 
reductions in striatal dopamine.56 Untreated patients 
might exhibit improved frontal function, as indexed by 
susceptibility to distraction: one study has recently shown 
improved resistance to distraction on a delayed response 
task in the absence of dopaminergic drugs, even when 
compared with controls, which was not maintained after 
drugs were resumed, potentially suggesting that overdose 
at the level of the frontal cortex reinstates distractibility.57 

Dopaminergic overdosing might also account for 
another type of defi cit in Parkinson’s disease—ie, 
impairments in attentional mechanisms used in rule 
learning, as seen in weather-prediction classifi cation 
tasks, in which diff erent stimuli predict diff erent 
outcomes (ie, the weather). The locus of overdose in this 
case might be in intact temporal regions, leading to 
attentional and consequent learning defi cits on tasks 
that make use of perceptually complex stimuli.58 Thus, 
impaired rule learning when this task requires the 
integration of non-verbal information present in such 

Panel 1: Eff ects of dopamine restoration 

Cognitive benefi t or amelioration of defi cit 
• Wisconsin card sorting test
• Tower of London test
• Task switching—concrete rules
• Digit span
• Spatial working memory

Cognitive deterioration from dopaminergic overdose
• Concurrent learning
• Probabilistic reversal learning
• Weather prediction classifi cation
• Gambling and decision making
• Delayed responding with distraction
• Visual hallucinations

No eff ect
• Attentional set-shifting (extra-dimensional shifting)
• Task switching—abstract rules
• Pattern and spatial recognition memory
• Associative learning
• Verbal memory

Dopaminergic restoration has ameliorating, deleterious, and in some cases no eff ects 
on aspects of mild cognitive impairment that emerge during neuropsychological 
testing in the early stages of Parkinson’s disease.
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stimuli59,60 might stem from an underlying attentional 
impairment.

Cholinergic and possible noradrenergic contributions to 
mild cognitive impairment in early Parkinson’s disease 
Results from early psychopharmacological studies have 
indicated that, compared with dopaminergic therapy, 
anticholinergic drugs lead to similar motor improvements 
after chronic treatment in newly diagnosed patients but 
impaired short-term memory33 and frontal-like executive 
dysfunction after acute treatment,61 a pattern similar to 
that seen in patients, but not controls, after treatment 
with hyoscine.62 Cholinergic defi cits at the level of the 
frontal and temporal cortex are well documented even 
early in the course of Parkinson’s disease63–65 owing to 
degeneration of the basal forebrain cholinergic nuclei 
and ascending cholinergic pathways, which occurs in 
parallel with the main dopaminergic pathological 
changes. Neuro pathological evidence lends support to a 
role of acetylcholine-based cognitive defi cits in patients 
with Parkinson’s disease who do not have dementia. In 
one study, although reduced choline acetyltransferase 
activity was reported in both prefrontal and temporal 
regions, and this was correlated with Lewy body load, 
only prefrontal choline acetyltransferase activity and D1 
receptor density in the caudate nucleus were correlated 
with the extent of cognitive impairment in the absence of 
Alzheimer’s disease pathological changes.66 More 
recently, by use of acetylcholinesterase PET imaging, 
cholinergic denervation was reported in patients without 
dementia,67 which was associated with impaired episodic 
verbal learning and Stroop performance68—a task 
invoking executive control, or inhibition, over the 
prepotent reading response to a word printed in ink of an 
incongruent colour. 

Another aspect of executive dysfunction in early 
Parkinson’s disease is attentional set-shifting (extra-
dimensional shifting), which refers to switching between 
higher-order modalities or classes of stimuli on the basis 
of feedback. Given the role of both fl exibility and learning 
in extra-dimensional shifting, patients with Parkinson’s 
disease unsurprisingly have reliable defi cits mirroring 
fronto-striatal dysfunction, with cortical processing 
defi cits associated with the degree of striatal involvement 
at diff erent task stages.69 Dopamine depletion in the 
caudate nucleus has no eff ect on extra-dimensional 
shifting in the marmoset;70 similarly, switching attention 
between diff erent perceptual aspects of a stimulus is 
insensitive to dopaminergic manipulation in Parkinson’s 
disease,32,37,39,45,71 as is switching between abstract rules 
governing judgments of stimulus categories.25 Increasing 
evidence72 suggests that norepinephrine might be 
implicated in this type of higher-order cognitive fl exibility. 
This as-yet untested hypothesis is consistent with the 
early and profound degeneration of the locus coeruleus, 
the main source of cortical norepinephrine,73,74 seen in 
patients with Parkinson’s disease. 

Dementia in Parkinson’s disease 
Clinical characteristics 
Although patients with Parkinson’s disease dementia 
share some of the features of cognitive impairment seen 
in patients without dementia in terms of executive and 
mnemonic features,75 the range, complexity, and severity 
of cognitive and psychiatric symptoms clearly diff erentiate 
these patients. The diagnosis of dementia in patients with 
Parkinson’s disease is a complex undertaking despite its 
clear diff erentiation from the dementia of Alzheimer’s 
disease, as recently highlighted by the Movement Disorder 
Society task force.76,77 The consensus criteria specify a 
diagnosis of Parkinson’s disease according to the Queen 
Square Brain Bank criteria, and a dementia syndrome 
that is manifest in two or more cognitive domains with a 
decline in levels of functioning and that causes social and 
occupational impairment; defi cits such as fl uctuating 
attention, executive dysfunction, free recall, and 
visuospatial function might be seen. Patients with 
Parkinson’s disease dementia can also have psychiatric 
symptoms such as depression, anxiety, excessive daytime 
sleepiness, and visual hallucinations (panel 2). 

As Parkinson’s disease dementia has been associated 
with mortality, longitudinal estimates of its cumulative 
prevalence, rather than cross-sectional estimates, are 
more accurate representations of true dementia frequency 
within the Parkinson’s disease population, and range 
from 75% to 90%.78,79 Similarly, patients with Parkinson’s 
disease are three to fi ve times more likely to develop 
dementia compared with healthy individuals.12,80 The 
prevalence of Parkinson’s disease dementia in the general 
population has been estimated at 2–3%81 and is the best 
predictor of admission to a nursing home.82 

With regards to cognitive symptoms, dementia in 
Parkinson’s disease is closely related to dementia with 
Lewy bodies, although both are distinguishable from 
Alzheimer’s disease, which involves more profound 
memory impairments.83 Lewy bodies (a common feature 
in dementia disorders), plaques, and vascular changes 
are present in both Parkinson’s disease dementia and 
dementia with Lewy bodies; these disorders are 
characterised by diff erent temporal profi les, but whether 
they are separate non-converging clinical diseases 
remains a matter of debate.84 In this Review, we focus on 
the development of dementia at least 1 year after the 
diagnosis of Parkinson’s disease. 

The association between early cognitive impairment 
and Parkinson’s disease dementia 
Parkinson’s disease dementia is associated with many 
types of cognitive impairment, but it remains unclear 
whether dementia itself is indicative of further cognitive 
deterioration along the same impairment pathway as mild 
cognitive impairment in patients without dementia,14,85 or 
whether it is a separate clinical disorder86 or an interaction 
between Parkinson’s disease and age. Because the criteria 
for Parkinson’s disease dementia require a diagnosis of 
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Parkinson’s disease before dementia onset, patients with 
early signs of dementia before or in the absence of a 
diagnosis of Parkinson’s disease would not be considered 
for inclusion in an epidemiological or longitudinal study 
that attempted to address this issue. For example, subtle 
memory defi cits are seen in early Parkinson’s disease and 
equivocal fi ndings have been reported with regard to 
verbal and visual memory defi cits in early Parkinson’s 
disease dementia,87–91 consistent with temporal lobe 
denervation (see below). The distinct pathological features 
of Alzheimer’s disease92 might contribute to some aspect 
of memory dysfunction in Parkinson’s disease dementia,93 
but this cognitive impairment is overall milder than in 
Alzheimer’s disease.94 Whether mnemonic defi cits in 
Parkinson’s disease dementia are independent of the 
executive impairment and fl uctuating attention,94 which 
precede and eventually precipitate the dementia diagnosis, 
is unclear. 

Moreover, age has a substantial eff ect on Parkinson’s 
disease dementia.95 Despite the large variability in the 
timing of dementia onset, from a few years to two decades 
from the diagnosis of Parkinson’s disease, age at onset 

and consequent duration of Parkinson’s disease seem to 
make no notable contribution beyond age itself;96 young 
patients with early-onset Parkinson’s disease, and therefore 
with longer disease duration, have low rates of dementia. 
In a recent study97 on the neuropathological changes 
observed in the fi nal phase of Parkinson’s disease at 
diff erent ages, two clinical milestones of advanced disease, 
dementia and visual hallucinations, were associated with 
cortical Lewy body load and greater Alzheimer’s disease-
type pathological changes, but overall no diff erences were 
seen as a function of age. Only in the early-middle phase, 
before dementia and visual hallucinations develop, did 
age aff ect rate of disease progression; pathological changes 
progressed uniformly in the advanced stage irrespective of 
the age at onset. Parkinson’s disease has been proposed to 
progress exponentially, so that ageing leads to a longer 
disease course in young-onset patients, accelerating 
clinically when the advanced stage is reached to match 
that of older-onset cases.97 This exponential clinical eff ect 
might not be attributable to the actual rate of 
neurodegeneration in Parkinson’s disease as such, but 
could result from an exponential  increase in the number 
of neurons aff ected during the regional transition of the 
disease from the brainstem nuclei to the neocortex. 

Data from many studies lend support to a predictive 
association between the executive dysfunction of mild 
cognitive impairment in early Parkinson’s disease and 
Parkinson’s disease dementia, highlighting defi cits in 
verbal fl uency, abstract reasoning,9 picture completion,10 
and Stroop performance10,98 as prognostic of dementia 
onset. However, the nature of neuropsychological defi cits 
that are prodromal to dementia might diff er as a function 
of their temporal distance from development of dementia; 
moreover, the meaningfulness and practical use of an 
association between Parkinson’s disease dementia and 
perseveration on the Wisconsin card sorting test observed 
within just 1 year of dementia onset99 might be limited. 

Data from other studies, however, have indicated that 
the profi le of impairment in patients who eventually 
develop dementia might diff er from the typical fronto-
striatal executive dysfunction seen in early Parkinson’s 
disease,15 emphasising the role of visuospatial and 
language defi cits in these patients that are indicative of 
early Lewy body load in the occipito-parietal cortex and the 
temporal lobe. This diff ering profi le is highlighted in the 
Parkinson’s disease dementia criteria of the Movement 
Disorder Society, and data from our studies have indicated 
that impairment on two simple bedside assessments—
pentagon copying from the mini-mental state exam-
ination100 and semantic fl uency—predict cognitive decline 
and Parkinson’s disease dementia at 3-year and 5-year 
follow-up.15,101 Defi ning the pattern of mild cognitive 
impairment that is prodromal of Parkinson’s disease 
dementia is an area of active research owing to its 
predictive value and the possibility that these defi cits could 
respond better to treatments used in dementia such as 
cholinesterase inhibitors and memantine (see below). 

Panel 2: Diagnostic criteria, neuropsychological features, 
and psychiatric symptoms of Parkinson’s disease 
dementia

Diagnostic criteria 
• Diagnosis of Parkinson’s disease according to Queen 

Square brain bank criteria
• Parkinson’s disease precedes dementia onset
• MMSE score of <26
• Severe cognitive dysfunction that interferes with daily living
• Impairment on at least two of the following: three-word 

recall (MMSE), overlapping pentagons (MMSE), months 
reversed or sevens backward (MMSE), lexical fl uency, or 
clock drawing

• Absence of major depression, delirium, or other 
abnormalities that obscure diagnosis 

Neuropsychological defi cits
• Executive: Wisconsin card sorting test, Stroop 

performance, Odd-Man-Out, verbal fl uency (semantic, 
phonological)

• Working memory: digit and spatial span
• Memory: free and cued recall, auditory verbal learning
• Visuospatial abilities: clock drawing, Benton line 

orientation, face recognition, fragmented letters

Psychiatric symptoms
• Visual hallucinations
• Psychosis
• Apathy
• Depression
• Anxiety

MMSE=mini-mental state examination.
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Neuroimaging fi ndings in Parkinson’s disease dementia 
Neuroimaging evidence complements these neuro-
psychological fi ndings, suggesting that both widespread 
pathological changes and specifi c regional changes in the 
brain underlie early mild cognitive impairment before 
Parkinson’s disease dementia develops. Reduced cerebral 
glucose uptake in extensive posterior cortical areas, 
particularly in the occipitoparietal junction and temporal 
cortex, occurs in patients with Parkinson’s disease and 
mild cognitive impairment compared with cognitively 
intact patients.102,103 Widespread changes in fractional 
anisotropy measures from diff usion tensor MRI are 
more prominent in mild cases of non-tremor-dominant 
Parkinson’s disease than in tremor-dominant and 
mixed profi le Parkinson’s disease, potentially refl ecting 
diff use grey matter loss104 that might also predict 
subsequent cognitive decline. 

In established Parkinson’s disease dementia, 
substantial atrophy is seen throughout the brain, 
particularly in the frontal, temporal, and occipital cortices 
and in subcortical regions.105–109 In one study, reductions 
in grey matter in the occipital cortex bilaterally 
diff erentiated Parkinson’s disease dementia from 
Parkinson’s disease.110 In another study, which accounted 
for atrophy changes, decreased blood fl ow in posterior 
parieto-occipital regions, particularly the precuneus, was 
reported in patients with Parkinson’s disease dementia 
but not in patients with Alzheimer’s disease for whom 
posterior cingulate changes were reported instead.111 
Although increased concentrations of cortical amyloid 
have been reported in patients with dementia with Lewy 
bodies,112 but not in patients with Parkinson’s disease 
dementia,113 it is unclear whether amyloid deposition is a 
time-dependent process, and therefore diff erent in 
dementia with Lewy bodies and Parkinson’s disease 
dementia, which have diff erent dementia time courses. 
Amyloid might have a greater role with shorter time to 
dementia onset, a hypothesis that is supported by 
clinicopathological fi ndings of increased amyloid and 
α-synuclein concentrations in patients with dementia 
with Lewy bodies and Parkinson’s disease dementia of 
shorter disease duration compared with patients with 
Parkinson’s disease dementia who have a longer motor 
symptom history before dementia onset.114 Establishing 
the cortical amyloid burden in Parkinson’s disease 
dementia and whether it aff ects the clinical phenotype is 
important when evaluating the benefi ts of anti-amyloid 
strategies in Parkinson’s disease dementia.

Visual hallucinations also predict rapid cognitive 
deterioration and dementia onset in Parkinson’s 
disease.115,116 Visual hallucinations are associated with 
cortical Lewy bodies117 particularly in temporal regions.118 
Hippocampal atrophy is associated with verbal learning 
defi cits in patients with Parkinson’s disease dementia who 
have hallucinations.119 Compared with patients who do not 
have hallucinations, patients with visual hallucinations 
also have frontal hypermetabolism120 and orbitofrontal 

atrophy that correlates with visual memory defi cits.121 
Nonetheless, visuospatial and perceptual defi cits are more 
frequently observed in patients with Parkinson’s disease 
dementia with visual hallucinations,122,123 similar to the 
prominent pathological changes in the visual association 
area, discussed previously. Visual hallucinations in 
Parkinson’s disease dementia might therefore have a 
complex neural origin, and visual, temporal, and frontal 
areas might also be implicated, depending on the criteria 
used to specify the Parkinson’s disease dementia and 
control groups.

Cholinergic dysfunction in Parkinson’s disease dementia 
Cholinergic defi cits stem from degeneration and Lewy 
body pathological changes in the basal forebrain and 
ascending cholinergic pathways, which can be even more 
pronounced in patients with Parkinson’s disease dementia 
than in patients with Parkinson’s disease or Alzheimer’s 
disease,124–129 aff ecting the frontal, parietal, and temporal 
cortices and the amygdala. These in-vivo neuroimaging 
studies were preceded by early post-mortem fi ndings from 
patients with Parkinson’s disease dementia of reduced 
choline acetyltransferase concentrations, particularly in 
the temporal cortex, which were associated with the extent 
of cognitive impairment and the size of the surviving 
neuronal population of the basal forebrain nucleus of 
Meynert.130 The onset of dementia was also associated with 
profound basal forebrain cholinergic degeneration.65 By 
contrast, nigrostriatal dopaminergic degeneration is 
indistinguishable between Parkinson’s disease, Parkinson’s 
disease dementia, and dementia with Lewy bodies.131 
Cholinergic abnormalities are also thought to underlie 
visual hallucinations in Parkinson’s disease dementia.132–134 
In the past 10 years, cholinesterase inhibitors, discussed 
below, have been recognised to confer moderate benefi ts to 
patients with Parkinson’s disease dementia,135 at least early 
in the course of dementia. 

Genetic susceptibility factors 
Research on genetic susceptibility to Parkinson’s disease 
dementia has been inconclusive, although a family 
history of Parkinson’s disease136,137 might increase the risk 
for developing dementia. Some studies have focused on 
α-synuclein and tau, which might be involved in this 
process, suggesting that common variation in both the 
SNCA (α-synuclein) and the MAPT (microtubule-
associated protein tau) H1 haplotype might not only 
aff ect susceptibility to sporadic Parkinson’s disease, but 
also aff ect the rate of cognitive decline and Parkinson’s 
disease dementia.101,138–140 Moreover, tau has been linked to 
cholinergic neurotransmission via the K allele of the 
butyrylcholinesterase gene (BCHE), which is relevant to 
cognitive impairment in Alzheimer’s disease141 and 
reduces tau phosphorylation rate, and hence directly 
aff ects Lewy body formation.142 The apolipoprotein E ε4 
(APOE ε4) allele, which increases vulnerability to 
Alzheimer’s disease and predicts cholinergic defi cits,143 
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has also been equivocally associated with Parkinson’s 
disease dementia,80,144 although large-scale studies are 
needed to clarify this.145 Cognition in patients with 
Parkinson’s disease dementia carrying both the APOE ε4 
allele and the BCHE K allele might deteriorate more 
rapidly than in other patients,146 although the underlying 
mechanism is unclear. Finally, gluco cerebrosidase 
mutations implicated in Lewy body formation might 
increase the risk for both Parkinson’s disease dementia 
and dementia with Lewy bodies;147,148 in one study, 
hallucinations and dementia were reported in about 45% 
of mutation carriers. More work is needed to understand 
the genetic contributions to Parkinson’s disease dementia 
with large-scale, adequately powered longitudinal studies 
that focus on common or more frequent mutations in 
relevant genes to account for variation in cognitive 
decline in the wider Parkinson’s disease population. 

Heterogeneity in cognitive profi les 
The association between mild cognitive impairment in 
patients with and without dementia is far from straight-
forward. Although cognitive impairment, particularly in 
the form of early-stage executive dysfunction, is fairly 
common in Parkinson’s disease and well documented 
neurally and neurochemically, it is not universal or 
uniform; patients have diverse impairment profi les with 
variable risk and progression rate to dementia. The basis 
of this heterogeneity is unclear but might be at least partly 
explained by uneven dopamine loss across the basal 
ganglia circuitry149,150 and neurodegenerative hallmarks 
such as the emergence of cortical Lewy bodies and non-
Parkinson’s disease features as a consequence of ageing,97 
which might interact with the putative pathological 
processes that underlie dementia.

Recent genetic fi ndings in patients with mild Parkinson’s 
disease without dementia point to the role of catechol-
aminergic metabolism and its modulation by the COMT 
Val158Met polymorphism in executive dysfunction. 
Results from behavioural and genetic imaging studies 
have indicated that the COMT genotype might aff ect 
performance on tasks sensitive to fronto-striatal dys-
function such as the Tower of London test.151–153 Early 
Parkinson’s disease is characterised by a basal hyper-
dopaminergic state in the prefrontal cortex, which might 
change as the disease progresses and be subject to mod-
ulation by COMT and dopaminergic drugs. Dopamine-
dependent executive dysfunction in Parkinson’s disease 
has been proposed to occur as a function of these 
factors,151,154 and relates to the notion of optimum dopamine 
concentrations in the prefrontal cortex; cognitive functions 
such as executive control reliant on this circuitry are 
adversely aff ected by too high or too low dopamine 
neurotransmission. The COMT genotype aff ects fronto-
parietal activity during planning in the Tower of London 
test, presumably refl ecting changes in cortical dopamine 
modulation. Although these fi ndings link the COMT 
polymorphism with dopamine-specifi c eff ects, all 

catecholaminergic neurotransmission, including nor-
adrenergic, is also aff ected by this polymorphism.155 Further 
replication in other cohorts of patients will strengthen the 
case for an association between the COMT mutation and 
the dysexecutive syndrome in Parkinson’s disease.

In addition to understanding cognitive heterogeneity 
observed at any one point between patients, data from 
large cohort studies with longitudinal follow-up have 
indicated diff erent patterns of disease progression over 
time. For example, in a subgroup of patients with 
dopamine-unresponsive axial features such as postural 
instability and gait disturbance, there is a greater tendency 
to develop dementia earlier in the disease course,14,15,156,157 
and results from other studies have shown that dementia 
is rare in patients with tremor-dominant Parkinson’s 
disease.158 The basis for this fi nding is unclear but seems 
likely to relate to early notable non-nigral pathological 
changes, particularly Lewy body formation in extra-nigral 
sites, including the pedunculopontine nucleus149 and 
neocortex. The Sydney multicentre study159 is unique in its 
clinicopathological insights based on the 20-year 
longitudinal follow-up of a large cohort. In this study, 
three distinct groups were identifi ed: one group with 
severe neocortical Lewy body disease consistent with the 
profi le of dementia with Lewy bodies, a younger-onset 
group with longer survival and typically slow clinical 
course progressing caudorostrally from the brainstem, 
and a third group with late-onset disease who had a faster 
rate of progression to dementia, with limbic and 
neocortical pathological changes. Taken together, these 
fi ndings indicate the existence of meaningful subdivisions 
in the presentation and progression of cognitive 
dysfunction in patients with Parkinson’s disease. 

The heterogeneity characteristic of cognitive 
impairment in Parkinson’s disease, with its varied 
neuropsychological and clinical manifestations and 
diverse underlying neurochemistry, is summarised in 
the fi gure. Neuropsychological overlap exists because 
patients with Parkinson’s disease and dementia, with 
their pronounced acetylcholine-based visuospatial and 
memory defi cits, also have dopamine-dependent 
executive defi cits, secondary to nigrostriatal degeneration 
that underlies their diagnosis of this disorder. Because 
Parkinson’s disease aff ects many of the neurotransmitter 
systems of the reticular core in addition to nigrostriatal 
dopamine, noradrenergic imbalance might contribute to 
a diff erent subset of executive defi cits, and some degree 
of frontal cholinergic defi cit might also contribute to 
cognitive impairment early in the disease course. 

To establish the development of cognitive impairment 
in Parkinson’s disease empirically, pharmacological—ie, 
catecholaminergic and cholinergic—manipulations 
could be systematically applied longitudinally in a large 
patient cohort versus a matched control population to 
assess possible interactions with ageing. The possible 
contributions of interactions at the neurotransmitter 
level also need to be taken into account. As some 
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symptoms of Parkinson’s disease dementia seem to be 
sensitive to cholinergic manipulations, at least in some 
patients and particularly early in the disease course, more 
than just the obvious interpretation of a central profound 
cholinergic defi cit is implied; boosting cholinergic 
neurotransmission might mitigate the eff ects of 
encroaching cortical and subcortical denervation, by 
enhancing the function of a degenerating cortex or by 
interacting with other failing neurotransmitter systems. 
We concede that this complex picture might only be 
deciphered by taking into account variation not only at 
the phenotypic level, but also at the genotypic level.

Clinical management 
Dopaminergic treatments of cognitive defi cits 
Therapeutic intervention in Parkinson’s disease dementia 
is structured around treatment of the motor impairment 
and non-motor symptoms of sleep disturbance, 
gastrointestinal problems, and depression. Because these 
features ultimately have the greatest eff ect on patients’ 
quality of life, symptom relief and promotion of functional 
independence is of great importance. An overall strategy 
of delaying the use of levodopa160 avoids or postpones the 
development of motor complications, drug intolerance, 
and cognitively detrimental side-eff ects. From this point 
of view, amelioration of the executive fronto-striatal defi cits 
seems to be a noteworthy, although possibly secondary, 
consequence of the central dopaminergic treatment 
strategy. Factors such as age and disease severity,161 as well 
as the COMT polymorphism, interact with dopaminergic 
regimens and contribute to subtle diff erences in the 
cognitive profi le of patients with Parkinson’s disease 
without dementia. Recent concerns about the use of 
dopaminergic agonists in the development of pathological 
gambling, impulse control, and repetitive behaviours 
extend the implications of the dopamine overdose 
hypothesis from the cognitive to the psychiatric 
domain.162,163 Factors such as male sex, novelty-seeking 
behaviour, impulsivity, and family history of addictive 
behaviour seem to be associated with these side-eff ects.164

Although dopaminergic drugs are known to ameliorate 
some cognitive defi cits in Parkinson’s disease, as has 
already been discussed, consideration of these benefi ts 
has limited relevance to prescribing practice for patients 
with advanced disease and neuropsychiatric symptoms.  
Despite the fact that hallucinations in Parkinson’s 
disease implicate dopaminergic, cholinergic, and 
serotonergic imbalances, agonist-induced dopaminergic 
overdose is associated with hallucinations in Parkinson’s 
disease.165–168 Pramipexole, a D2/D3 agonist, has harmful 
eff ects on cognition,48,169 causing additional defi cits in 
verbal fl uency, executive function, and verbal short-term 
memory compared with pergolide, which acts on 
D1/D2 receptors.170,171 

In addition to its main dopaminergic features, executive 
impairment in early Parkinson’s disease might have a 
noradrenergic component, expressed as higher-order 

Figure: Cognitive impairment in Parkinson’s disease 
The neuropsychological defi cits characterising the dysexecutive syndrome in 
the mild cognitive impairment of early Parkinson’s disease are mediated 
mainly by fronto-striatal dopaminergic dysfunction (blue). Noradrenergic 
dysfunction (green) probably underlies the attentional set shifting defi cit, 
which forms part of the dysexecutive syndrome, although this remains 
untested in Parkinson’s disease. Some frontal cholinergic defi cit (red) also 
compromises early Parkinson’s disease cognition. Although diff use cortical 
degeneration is seen in Parkinson’s disease dementia, its distinctive 
visuospatial and mnemonic defi cits indicate cholinergic involvement. 
Cholinergic modulation probably has a key role in the progression to 
Parkinson’s disease dementia (red arrow). Neuropsychological defi cits are 
shared with those of the frontal dysexecutive syndrome (overlapping boxes of 
cognitive defi cits), which indicate the primary catecholaminergic and 
comparatively circumscribed cholinergic pathological changes of early 
Parkinson’s disease. Pathways outlined on the brain section are those 
compromised by the disease and likely to be implicated in cognitive 
impairment. The cholinergic pathways are from the pedunculopontine 
nucleus to the thalamus (1) and from the basal nucleus of Meynert to the 
neocortex (2). The dopaminergic pathways are the nigrostriatal, from the 
substantia nigra (pars compacta) to the striatum (3); mesolimbic, from the 
ventral tegmental area to the nucleus accumbens (4); mesocortical, from the 
ventral tegmental area to the frontal cortex (5); and tuberoinfundibular, from 
the hypothalamus to the pituitary gland (6). The noradrenergic pathways are 
from the lateral tegmental nucleus to the amygdala and hippocampus (7); and 
from the locus coeruleus to the hypothalamus, thalamus, amygdala, cortex, 
and cerebellum (8). Serotonergic defi cits are also present in Parkinson’s 
disease (not shown). WCST=Wisconsin card sorting test. TOL=Tower of 
London test. EDS=extra-dimensional shifting.
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cognitive fl exibility defi cits. In an 8-week, dose-fl exible 
pilot study, atomoxetine, a norepinephrine-reuptake 
inhibitor licensed for the treatment of attention-defi cit 
hyperactivity disorder, improved executive function, 
attention, and verbal memory in patients with Parkinson’s 
disease,172 suggesting a novel treatment approach for the 
cognitive sequelae of noradrenergic dysfunction in 
this disease. 

 Cholinergic treatment of cognitive defi cits 
By contrast with the early executive defi cits, deliberate 
attention has been given to the pharmacological 
management of Parkinson’s disease dementia owing to 
its devastating and pervasive eff ect on patients and 
caregivers. Cholinesterase inhibitors, a class of drugs 
typically used in the management of Alzheimer’s 
disease, can be used with modest benefi t in Parkinson’s 
disease dementia, at least in the early stages, with few 
side-eff ects (table 2).177–179 Rivastigmine, a dual inhibitor 
of acetylcholinesterase and butyrylcholinesterase, 
improves dementia symptoms mainly by ameliorating 
the fl uctuating attention that interferes with the simplest 
of tasks in patients with Parkinson’s disease dementia, 
while only slightly increasing tremor.135,180 In one study, 
rivastigmine improved activities of daily living in 
Parkinson’s disease dementia relative to baseline, but 
only stabilised patients with Alzheimer’s disease, and 
the presence of visual hallucinations predicted treatment 
response.181 Other cholinesterase inhibitors, such as 
donepezil, also improve cognition, as measured by 
mini-mental state examination scores and clinicians’ 
interview-based impression of change with caregiver 
input, without exacerbating parkinsonism.173 
Galantamine, with its additional nicotinic action, 
ameliorates dementia but might be associated with 
adverse physical side-eff ects.174 

Consequently, anticholinergic drugs, which have 
typically been used to target tremor in Parkinson’s 
disease, have the most adverse eff ects with regard to 
dementia160 and are a substantial risk factor for Parkinson’s 
disease dementia. Prolonged use of these drugs is 
associated with increased frequency of cortical plaques 
and tangles in patients with Parkinson’s disease without 
dementia;182 thus any disease-modifying benefi t is 
outweighed by the risk of these side-eff ects. 

In addition to cholinesterase inhibitors, NMDA receptor 
antagonists are also proving clinically relevant for the 
management of Parkinson’s disease dementia. Amantadine 
might delay and attenuate the severity of dementia in 
Parkinson’s disease,176 but can induce hallucinations and 
confusion in patients with advanced disease. Memantine, 
a glutamatergic compound and non-competitive antagonist 
of nicotinic acetylcholine receptors, has ameliorated 
cognitive impairment in Parkinson’s disease dementia in 
recent trials.175,183 

Cognitive rehabilitation 
Pharmacotherapy can be complemented by the provision 
of psychosocial support and cognitive rehabilitation 
through structured training programmes. In patients with 
Parkinson’s disease without dementia, cognitive training 
that targeted attention, abstract reasoning, and visuospatial 
abilities improved aspects of cognition reliant on frontal 
function.184 Results from this preliminary study indicated 
lasting improvements compared with baseline verbal 
fl uency and recall, emphasising the importance of 
continued mental stimulation in the preservation of 
cognitive capacity. We are not aware of other similar studies 
in Parkinson’s disease dementia and, in this regard, 
evidence from a study in patients with Alzheimer’s disease 
and mild cognitive defi cits who received cholinesterase 
inhibitors might be relevant.185 In this study, training on 

Neurochemical action Study design* n (total) Moderate clinical benefi ts

Rivastigmine Dual  acetylcholinesterase  and 
butyrylcholinesterase inhibition

Randomised, placebo-controlled 
trial135

410 ADAS-Cog, ADCS-activities 
of daily living, MMSE, verbal 
fl uency, attention, clock 
drawing

Donepezil Acetylcholinesterase  inhibition Double-blind, randomised, 
placebo-controlled, crossover trial173

14 MMSE, CIBIC+

Galantamine Acetylcholinesterase inhibition, 
nicotinic acetylcholine receptor 
stimulation

Open-label placebo-controlled trial174 41 MMSE, NPI, clock drawing, 
reduction in sleep 
disturbance, anxiety, 
hallucinations 

Memantine NMDA receptor antagonist, nicotinic 
acetylcholine receptor antagonist

Double-blind, randomised, 
placebo-controlled, multicentre trial175

72 patients with Parkinson’s 
disease dementia or dementia 
with Lewy bodies

CGIC, attentional speed

Amantadine NMDA receptor antagonist Retrospective study involving survival 
analysis of a group of patients with 
Parkinson’s disease176

593 Greater MMSE and slower 
cognitive decline to 
dementia endpoint 

*Only representative studies are shown. ADAS-Cog=Alzheimer’s disease assessment scale-cognitive subscale. ADCS=Alzheimer’s Disease Cooperative Study. MMSE=mini-mental 
state examination. CIBIC+=clinicians’ interview-based impression of change with caregiver input. NPI=neuropsychiatric inventory. CGIC=clinical global impression of change.

Table 2: Targeting cholinergic and glutamatergic imbalance in the early stages of Parkinson’s disease dementia can confer modest benefi ts to 
overall functioning
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recall, orientation, and functional tasks (eg, paying bills) 
resulted in greater improvement compared with a simple 
programme of therapist-led mental stimulation, and this 
improvement was maintained even at a 3-month follow-
up. These approaches are becoming increasingly relevant 
to progressive neurodegenerative disorders with cognitive 
and psychiatric symptoms such as Parkinson’s disease 
dementia and could be tailored to the needs of cognitively 
impaired patients with Parkinson’s disease, particularly 
early in the course of dementia. For example, such a 
programme could incorporate strategies that promote 
physical independence by focusing on walking diffi  culties 
faced by patients with visuospatial defi cits. A large cluster 
randomised controlled trial186 across urban residential sites 
for patients with dementia studied the eff ects of person-
centred care and dementia care. Although non-specifi c 
intervention eff ects were not controlled for, there were 
reductions in agitation and prescription of psychotropic 
drugs, highlighting new ways of improving the quality of 
life of patients with dementia.

Conclusions 
In this Review, we have outlined cognitive decline in 
Parkinson’s disease in terms of various neuropsychological 
and neurochemical pathways (fi gure). Early cognitive 
impairment, particularly in the form of executive 
dysfunction, is indicative of mainly fronto-striatal 
pathological changes and might originate in nigrostriatal 
and subsequent mesocortical dopamine denervation 
rather than cortical Lewy body formation. A potential 
parallel noradrenergic defi cit, stemming from coeruleal 
degeneration, and the inevitable eff ect of circumscribed 
cholinergic disturbance in patients without dementia 
might also contribute to mild cognitive impairment in 
early Parkinson’s disease. Cognitive impairment in some 
patients might be constrained to manageable executive 
and memory defi cits. Others, in whom extensive Lewy 
body pathological changes lead to widespread cortical and 
subcortical degeneration and a profound cholinergic 
defi cit, might develop dementia. Some aspects of mild 
cognitive impairment in early Parkinson’s disease can be 
prodromal to dementia, but its association with this 
qualitatively distinct, severe level of dysfunction is unclear, 
as is the role of cholinergic defi cits in its expression. 
Pharmacological amelioration of the executive defi cits is 
mostly a typical consequence of the dopaminergic regimen 
that targets motor symptoms, whereas cholinesterase 
inhibitors are the treatment of choice for early-stage 
Parkinson’s disease dementia. Advances are being made 
in disentangling the cognitive phenotypes of Parkinson’s 
disease, but large longitudinal studies are needed to 
understand the specifi c neurochemical and neuro-
pathological bases of cognitive impairment. Early 
identifi cation of patients at risk of severe cognitive 
impairment and dementia will help to better inform 
choice of pharmacotherapy and aid a personalised 
approach to treatment. 
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